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1 Introduction

We are given a ball on a tilted table moving with a specified velocity. We
are to change the velocity and position in a specified way by changing the
tilt angles of the table. If you know about the law of cosines and the inner
(dot product) of vectors, you may skip the next two sections.

2 The Law of Cosines and the Inner Product

of Vectors

We shall prove the law of cosines. Suppose we have three points

p0 = (0, 0), p1 = (b, 0), p2 = (x, y) = (a cos(θ), a sin(θ)).

These points form a triangle with sides p0p2, p0p1, p2p1. These sides have
lengths a, b, c. The angle between side p0p1 and side p0p2 is θ. We have

c2 = (x − b)2 + y2

= (x − b)2 + a2 − x2
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= x2 − 2xb + b2 + a2 − x2

= a2 + b2 − 2xb = a2 + b2 − 2ab cos(θ).

Thus we have the law of cosines, namely the square of the side opposite an
angle of a triangle, is equal to the sum of the squares of the adjacent sides,
minus two times the product of the sides and the cosine of the angle. That
is,

c2 = a2 + b2 − 2ab cos(θ).

The inner product (dot product) of two vectors, A and B, is defined as

A · B = a1b1 + a2b2 + a3b3.

Then the dot product of a vector with itself is the square of its length. That
is,

A · A = a1a1 + a2a2 + a3a3 = ‖A‖2.

Let
C = B − A.

Then
‖C‖2 = (B − A) · (B − A)

= B · B − B · A − A · B + A · A
= ‖B‖2 − 2A · B + ‖A‖2.

From which it follows that

2A · B = ‖A‖ + ‖B‖2 − ‖C‖2.

But the right hand side is, by the law of cosines,

2‖A‖‖B‖ cos(θ),

where θ is the angle between vectors A and B. Hence

A · B = ‖A‖‖B‖ cos(θ).

Thus if the the dot product is zero, then the cosine is zero, and so the angle
between the vectors is plus or minus π/2, and the vectors are perpendicular.
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Figure 1: Derivation of the law of cosines. x = cos(θ), y = sin(θ). Computing
c2, we find that c2 = a2 + b2 − 2ab cos(θ).

4



3 The Equation of a Plane

Suppose a plane has a unit normal n. Let a point on the plane be given by
a vector p. Then

n · p = ‖p‖ cos(θ),

where θ is the angle between n and p. This is the perpendicular distance d
from the origin to the plane. Therefore the equation of the plane is

n · p = d,

where
p = (x, y, z).

that is
n1x + n2y + n3z = d.

4 A Description of the Tilted Plane

We consider a table elevated from the floor by a distance h. That is the pivot
point on the table plane is located at a distance h. This pivot point in the
center of the table is supported by a column of length h. We assume here
for simplicity that the pivot point is on the surface of the table, neglecting
certain offsets that will be needed later. The table is tilted by two actuators.
We take our coordinate system so that the xy plane is the floor, and the
origin is directly below the table pivot point. An x actuator is a line segment
of variable length that always lies in the y = 0 plane. It is connected to the
center supporting column at a point a distance cx from the pivot point in
the table plane. It is connected to the table plane at a point that is at a
distance tx from the pivot point. Similarly, a y actuator always lies in the
x = 0 plane. It is connected to the center supporting column at a point a
distance cy from the pivot point in the table plane. It is connected to the
table plane at a point that is at a distance ty from the pivot point. Let the x
actuator have variable length α, and the y actuator have variable length β.
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5 The Plane Normal as a Function of Actua-

tor Lengths

The tilt of the table is controlled by two actuator lengths, as specified in the
previous section. Let us first consider the x actuator with length α.

We want to compute a vector u1 that lies in the intersection of the y = 0
plane and the table plane. This vector is given by

u1 = (cos(θx), 0, sin(θx)),

where θx is the angle between a line that is the intersection of the table plane
with the y = 0 plane, and the horizontal plane. This is

θx = φx − π/2,

where angle φx is given by the law of Cosines

cos(φx) =
c2
x + t2x − α2

2cx
.

Similarly, we compute a vector u2 that lies in the intersection of the x = 0
plane and the table plane. This vector is given by

u2 = (0, cos(θy), sin(θy)),

where θy is the angle between a line that is the intersection of the table plane
with the x = 0 plane, and the horizontal plane. This is

θy = φy − π/2,

where angle φy is given by the law of Cosines

cos(φy) =
c2
y + t2y − β2

2cy
.

Now the plane normal is

n = u1 × u2.

The equation of our table plane then is

n · p = h,

where h is the vertical distance from the floor to the table pivot point. We
will use this equation to compute the z coordinate of the center of the ball
rolling on the tilted plane, where the x and y coordinates are specified by the
camera image.
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6 The Mapping of Camera Coordinates to

Horizontal x and y Coordinates

This is the problem of aerial photography in miniature. But let us assume
that there are two functions fx and fy that map the video pixel coordinates
(i, j) to x and y coordinates. That is

x = fx(i, j),

and
y = fy(i, j).

Perhaps these are given by OpenCV functions. For more precision we
might have to consider the optics and focal properties of the camera lenses.
Now to compute the z coordinate we need the equation of the table plane
for a given tilt.

7 Projecting to the Tilted Plane

So in the previous section we assume we have the x and y coordinates com-
puted from the camera image as

x = fx(i, j),

and
y = fy(i, j).

Now we need the z coordinate of the point on the plane. We find z using the
equation of the plane found from the actuator lengths which define the plane
normal n. The equation of the plane is

xnx + yny + znz = h,

from which we have

z =
h − (xnx + yny)

nz
.

8 Sampling the Ball Velocity

We compute the ball velocity by getting two ball positions in a small time
interval ∆t.

v =
p2 − p1

∆t
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9 The Motion of the Ball With Fixed Table

Tilt

Suppose we measure the position and velocity of the ball using the camera.
We wish to compute the trajectory of the ball on the plane with fixed actuator
lengths α and β. So suppose the ball is at position p with velocity v. First
we intersect the table plane with the horizontal plane getting a line direction
unit vector w1. Then we compute a perpendicular unit vector w2. We resolve
the velocity vector into components in these directions, say

v = v1w1 + v2w2

So the motion is constant in the direction of w1, and in the direction of w2

it is pure rolling down an incline plane. So in the next section we derive the
motion of the ball down an incline plane.

10 The Motion of a Ball on an Incline Plane

To compute the motion of a ball rolling down an incline plane we need to
derive some properties of uniform linear and also circular motion since the
ball is rolling. It turns out that we need to consider the rotational moment
of inertia of the ball. The next few sections treat this material.

11 Uniform Acceleration

Suppose a mass point undergoes uniform acceleration a. Then

a =
d2s

dt2
,

where s is the location coordinate of the point. Integrating, the velocity
becomes

v =
∫

adt = v0 + at

where v0 is the initial velocity. Integrating again, the position is

s =
∫

vdt = s0 + v0t + a
t2

2
,
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where s0 is the initial position. The change in kinetic energy is

m(
v2

2
− v2

0

2
) = f(s − s0) = ma(s − s0),

where f is a constant force of acceleration. Dividing by m/2 we get

v2 − v2
0 = 2a(s − s0).

The velocity increases linearly with the time, so the average velocity multi-
plied by the time is the distance traveled

v + v0

2
t =

v0 + at + v0

2
t

= (v0 +
at

2
)t

= v0t +
at2

2

= (s − s0).

The four equations

v = v0 + at,

s = s0 + v0t + a
t2

2
,

v2 − v2
0 = 2a(s − s0),

and
v + v0

2
t = (s − s0),

usually suffice to solve problems of this type.
Example 1. Suppose a ball is rolled off of the edge of a table top. Suppose
the table is at height height h and the ball lands on the floor at a distance
s from a point on the floor below the table edge. What was the horizontal
velocity of the ball as it left the table edge?
Solution The ball is accelerated by the acceleration of gravity g downward.
The initial vertical velocity is zero, and the initial vertical position is zero.
So using the second formula

h = g
t2

2
,
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from which we find the time at which the ball hits the floor to be

t =
√

2h/g.

Then again from the first equation with the horizontal acceleration a = 0,
we have

v0t = s.

So we find the initial horizontal velocity to be

v0 =
s

t
= s

√
g

2h
.

In a real experiment let a be the distance up a ramp, so that the ball
starting at a gains velocity v, in rolling down the ramp. Let h = 0.9 meters.
We measure the following values and compute v.

a s v
10cm .48m 1.11m/s
20 .68 1.59
30 .79 1.84
40 .89 2.08
50 1.08 2.52
60 1.13 2.63
70 1.18 2.77
80 1.29 3.01

Example 2. Suppose a stone is dropped from a one hundred meter tall
bridge. What is the velocity of the stone as it hits the water, neglecting air
resistance?
Solution The acceleration of gravity is g = 9.81 meters per second squared.
Then from the third equation

v2 = 2gs,

v =
√

2gs =
√

2(100)(9.81) = 44.29

meters per second, or 159.5 killometers per hour.
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12 A Mass Point in Circular Motion

Let a mass point point be specified in polar coordinates (θ, r). Let the point
be constrained to lie on a circle of radius r. Let the polar coordinate unit
vectors be

ur = cos(θ)i + sin(θ)j,

uθ = − sin(θ)i + cos(θ)j.

The first vector is perpendicular to the circle and the second is tangent to it.
Let the position vector of the point be

p = rur.

The velocity is

v =
dp

dt
=

dr

dt
ur + r

dur

dt
= r

dur

dt
,

because here r is constant. We have

dur

dt
=

dur

dθ

dθ

dt

= uθ
dθ

dt
.

So

v = r
dθ

dt
uθ = rωuθ,

where ω is the angular velocity. The acceleration is

a =
dv

dt
= r

dω

dt
uθ + rω

duθ

dt

= r
dω

dt
uθ − rω2ur

= r
dω

dt
uθ − v2

r
ur,

where dω/dt is the angular acceleration, and v = rω is the tangential velocity.
If the angular acceleration is zero then v2/r is the magnitude of the centrepital
acceleration directed toward the center of the circle.
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13 The Kinetic Energy of a Mass Point

Let a mass point of mass m be accelerated from an initial velocity 0 to a
velocity v by a force f through a distance s. The work done and thus the
kinetic energy of the mass point is

∫
fds =

∫
m

dv

dt
ds

=
∫

m
ds

dt
dv

=
∫

mvdv

= m
v2

2
.

The kinetic energy of a rigid body of mass M moving with linear velocity v
is the sum of the kinetic energies of its mass points,

M
v2

2
.

If a mass point is revolving uniformly with angular velocity ω in a circle of
radius r, then its kinetic energy is

m
v2

2
= m

r2ω2

2
.

The moment of inertia of such a mass point is

I = mr2,

hence its kinetic energy is

I
ω2

2
.

It follows that a body rotating about a fixed point with moment of inertia I
has a kinetic energy of rotation

I
ω2

2
.
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14 The Simple Rotation of a Rigid Body

Although the general motion of a rigid body is rather complicated, the case
of rotation about a fixed axis is simple, so we shall derive the needed formulas
here.

Suppose a mass point, with mass mi, is constrained to move on a circle
with radius ri. Suppose a force Fi is applied to this point. The forces of
constraint may be ignored, since they do no work. Then the work done is

dW = ridθFti = dθτi,

where Fti is the tangential component of the force and τi is the torque. Then
the rate of doing work is

dW

dt
= ωτi.

This is equal to the change in kinetic energy of the particle

ωτi =
d((1/2)r2

i ω
2mi)

dt
= r2

i mi
dω

dt
ω.

Thus

τi = r2
i mi

dω

dt
.

Summing over all particles in the rotating rigid body, we get

τ =
∑

τi = (
∑

r2
i mi)

dω

dt
= I

dω

dt
,

where I is the rotational moment of inertia.

15 The Acceleration of a Body Rolling Down

an Incline Plane

Let a sphere roll down a ramp that is inclined to the horizontal by angle α.
Let s be the distance from the bottom of the ramp to the contact position
of the ball. Let the ball have radius r and let θ be the angle of rotation of
the ball. Then let

s = rθ.
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The kinetic energy of the ball is

T =
1

2
Mv2 +

1

2
Iω2

=
1

2
Mv2 +

1

2
I(v/r)2

=
1

2
(M + I/r2)v2

The potential energy is
V = hgM,

where
h = s sin(θ)

is the height of the ball. The Lagrangian is

L = T − V =
1

2
(M + I/r2)v2 − s sin(θ)gM.

∂L

∂v
= (M + I/r2)v

d

dt

∂L

∂v
= (M + I/r2)

dv

dt

∂L

∂s
= − sin(θ)gM.

The equation of motion is

d

dt

∂L

∂v
− ∂L

∂s
= 0

So

(M + I/r2)
dv

dt
+ sin(θ)gM = 0

or
dv

dt
= −g sin(θ)

M

M + I/r2

So the effective acceleration has been reduced by the factor

M

M + I/r2
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In the case of a sphere

I =
2

5
Mr2,

so the factor becomes
M

M + (2/5)M
=

5

7
.

16 Bringing the Ball to Rest in a Given Dis-

tance by Tilting the Plane.

Given a position p and a velocity v, compute the pure incline plane tilt that
would give the ball a velocity −v after having traveled distance d. Then since
the initial velocity was v, the ball will come to a zero velocity in distance d.
In practice the motion will not be exact, so the method can be iterated until
the desired result is obtained.

17 Given a Ball at Rest at Point P, Compute

the Tilt Motion to Bring It to Rest at

Point Q

Let d be the distance between P and Q. Give it a reasonable starting tilt in
the direction of Q, compute the time it takes to reach the halfway point. Use
the technique of the previous section to bring the ball to rest in distance d/2.

18 Making a Ball Follow a Specified Path

Given a curved path, compute sample points along the path. Do the tilting
to bring the ball to rest at each of the sample points.

19 Optimization

Not only must we move the ball in a specified path, we must do it in a short
amount of time. So more optimal methods of moving the ball will no doubt
be required.
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20 Practical Considerations: Defining a Path

for the Ball to Follow

Suppose we want the ball to follow a path that avoids holes in the plane.
We can construct a sequence of linear paths to follow. However, if there are
objects that will be bumped into, we will have to consider rebounds. Practical
versions of the tilting must be constructed after behavior is determined by
experiment.
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