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1 Magnetic Poles and Bar Magnets

A bar magnet has a north pole and a south pole. The north pole of a bar
magnet is its north seeking pole, that is points to the earth’s north. A north
pole attracts a south pole. The force on a north pole by a B field is in the
direction of the B field. Since two N poles repel, an N pole is a source of
the B field. A north pole on a magnetic compass is attracted to the earth’s
north pole. Therefore the earth being a more or less permanent magnet
attracts the north pole of a compass needle. It follows that the earth’s
north pole is actually a south magnetic pole, and the B lines of the earth
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enter the so called north pole of the earth, which is thus a south magnetic
pole. In a bar magnet the north pole is the pole from which B lines emerge.
The north magnetic pole of a compass needle points in the direction of the
magnetic induction field B. This is the convention, and it can be quite
confusing. Notice however that the north pole of a cylindrical electromagnet
is determined by the right hand rule. If you look down the axis of such a
magnet with the current circulating in a counterclockwise direction, then the
B lines are coming toward you making this end a north pole.

2 Stokes’ Theorem, The Divergence Theorem

If a surface S has bounding curve ∂S, Stokes’ theorem is
∫

S
∇×A · ndS =

∫

∂S
A · dr,

which allows a surface integral to be evaluated as a line integral around the
boundary of the surface. The surface normal is n.

The divergence theorem allows a volume integral to be evaluated as a
surface integral. Let V be a volume and ∂V be it enclosing surface. Then

∫

V
∇ · Adv =

∫

∂V
A · nds.
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3 Maxwell’s Equations

The Maxwell Equations in MKS form are

∇× H = J +
∂D

∂t
,

∇×E = −∂B

∂t
,

∇ · D = ρ,

∇ · B = 0.

E is the electric field vector, and B is the magnetic field vector. J is the
current density, and ρ is the charge density.

We specify the field definitions D and H and the force on a charged
particle. The electric vector field D is defined by

D = ε0E + P,

where P is the electric dipole moment per unit volume in a dielectric material.
The number ε0 is called the permittivity of free space. The magnetic field
vectors B and H are related by

H =
B

µ0

−M,

where M is the magnetic dipole moment per unit volume. The number µ0 is
called the permeability of free space.

The Lorentz force on a charge q is the sum of the electric and magnetic
forces

F = q(E + v × B).

4 More About Maxwell’s Equations

A vector field is a function defined on a domain of points in space that assigns
a vector V to each point p = (x, y, z) of the domain.

V = f(p) = f1(x, y, z)i + f2(x, y, z)j + f3(x, y, z)k,
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where i, j,k are the unit coordinate vectors in the x, y, z directions respec-
tively. For example, if every point in a medium has a velocity, the set of
velocity vectors is a vector field. Given a vector field

C = Cxi + Cyj + Czk,

the curl of C is defined to be

∇× C =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

Cx Cy Cz

∣

∣

∣

∣

∣

∣

∣

= (
∂Cz

∂y
− ∂Cy

∂z
)i + (

∂Cx

∂z
− ∂Cz

∂x
)j + (

∂Cy

∂x
− ∂Cx

∂y
)k

The divergence is defined by

∇ · C =
∂Cx

∂x
+

∂Cy

∂y
+

∂Cz

∂z
.

The gradient of a function f is

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

The Maxwell Equations in MKS form are

∇× H = J +
∂D

∂t
,

∇×E = −∂B

∂t
,

∇ · D = ρ,

∇ · B = 0.

H and B are magnetic fields, E and D are electric fields, J is the current
density, and ρ is the charge density.

The fields E and B may be defined by the forces they exert on a charged
particle of charge q. The Lorentz force on a charge q is the sum of the electric
and magnetic forces

F = q(E + v × B).
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Notice that a positive charge q moving perpendicular to an upward B field
is deflected to the right, like the Coriolis force in the northern hemisphere.

When the curl of a vector field is zero,

∇× C = 0,

the field is called irrotational. In that case the line integral of the field from a
point A to B is independent of the path and there exists a potential function
φ. So for example in electrostatics where there are no magnetic fields,

∇× E = 0.

Then E is equal to the negative gradient of a potential function φ, called the
electrical potential.

E = −∇φ.

Ampere’s Law is given by part of the First Maxwell Equation

∇× H = J +
∂D

∂t
.

Ampere’s Law says that each infinitesimal line element of current flow
produces a magnetic field. So for example the current in a loop produces
a magnetic field through the loop. The first Maxwell equation is Ampere’s
Law plus the addition of a displacement current term

∂D

∂t
.

Maxwell showed that this additional term is necessary. So Ampere’s Law
says that each portion of current flow produces a magnetic field, but more is
required. When there is no changing field D, which is a modification of the
E field caused by the presence of electrically polarized materials, then the
first Maxwell equation becomes

∇×H = J.

The vector field D is defined by

D = ε0E + P,

7



where P is the electric dipole moment per unit volume in a dielectric material.
The number ε0 is called the permittivity of free space. The magnetic field
vectors B and H are related by

H =
B

µ0

−M,

where M is the magnetic dipole moment per unit volume. Circulating cur-
rents inside a material give rise to magnetic dipoles, just as separated charges
in a material give rise to electric dipoles. For many materials there are linear
relationships

D = εE

and
B = µH.

We return to showing how Ampere’s law is related to the first Maxwell
equation. Ampere’s original statement of his law was about the force between
two parallel straight wires.

Applying Stoke’s Theorem we have
∫

C
H · dR =

∫

S
∇× H · dS =

∫

S
J · dS = i.

That is, the line integral of the magnetic intensity H around a path C equals
the amount of current i flowing through the surface S that is bounded by C.
This is Ampere’s law. Let us remark about the displacement term. Suppose
there were no displacement current term. Then if there were a capacitor
placed in our wire, there would be current flowing through the wire, but
no actual charge flowing between the capacitor plates. Hence, if we let our
surface S pass between the capacitor plates then there would be a zero J , and
thus a zero current i flowing through the surface. And so our line integral
of H around the magnetic circuit would be zero. So depending on where we
place our surface we get zero or not zero for the line integral. This is why
the displacement term

∂D

∂t

must be added to the first Maxwell equation. The displacement current term
is nonzero between the capacitor plates.

Faraday’s Law of Induction, the second Maxwell equation
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∇×E = −∂B

∂t
.

The second Maxwell equation is Faraday’s law of induction. Using Stoke’s
theorem we have

∫

C
E · dR =

∫

S
∇×E · dS = −

∫

S

∂B

∂t
· dS = −∂Φ

∂t
.

That is, the electric potential (MMF) around a circuit C is equal to the
rate of magnetic flux change through the circuit.

If the material is soft iron and essentially linear with little hysteresis we
may write

B = µH,

where µ is a constant called the permeability. Such material forms a linear
magnetic circuit.

Coulomb’s’s Law, the third Maxwell equation

∇ · D = ρ.

The third Maxwell equation arises from Coulomb’s law, which gives the
forces between charges. So suppose we have a small volume of charge located
at the origin and a larger spherical volume V surrounding it of radius r. Also
assume that we are in free space so that

D = ε0E.

We have
∇ · E =

ρ

ε0

.

Integrating this over the volume V we find

q

ε0

=
∫

V
∇ · EdV

=
∫

S
E · dS

= E4πr2,
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where we have used the divergence theorem to convert from a volume integral
to a surface integral, q is the charge in the small volume, and E is the
magnitude of the radial electric field on the spherical surface. So we have
the electric field at a distance r2 from a charge q is given by

E =
1

4πε0

q

r2
.

This is a form of Coulombs law. The force on a charge q by an electric field
E is by definition Eq. Thus given two charges q1 and q2, we obtain Coulombs
law for the force between two charges

F =
1

4πε0

q1q2

r2
.

The Absence of Magnetic Monopoles, the fourth Maxwell equation

∇ · B = 0.

The fourth Maxwell equation is has some similarity with the third law pro-
vided there is no magnetic charge density, no isolated magnetic charges. So
the divergence of the B field is zero. Using the divergence theorem to convert
a volume integral to a an integral on the bounding surface, we have

0 =
∫

V
∇ ·BdV =

∫

S
B · dS,

which means that every flux line entering a volume, leaves the volume. Thus
there are no sources of magnetic flux lines, no isolated magnetic poles, and
so flux lines form continuous loops.

5 Units and Physical Constants

Magnetic induction is written as B. The unit of magnetic induction in the
MKS system is now the tesla, which used to be called the weber per square
meter. A tesla equals 104 gauss, which is the cgs unit of magnetic induction.

The earth’s magnetic field is about half a Gauss.
1.5 T strength of a modern neodymium-iron-boron (Nd2Fe14B) rare earth

magnet. A coin-sized neodymium magnet can lift more than 9 kg, can pinch
skin and erase credit cards.
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the strength of a typical refrigerator magnet 5mT
Medical MRI 1.5 to 3 T, experimental 8 T
NMR spectrometer field strength of a 500 MHz NMR spectrometer 11.7

T
strongest (pulsed) magnetic field yet obtained non-destructively in a lab-

oratory 88.9 T
strongest pulsed magnetic field yet obtained in a laboratory, destroying

the used equipment, but not the laboratory itself 730 T

µ0 = 4π × 10−7 tesla · meter/ampere

= 1.256637061435917× 10−6 tesla · meter/ampere.

The magnetic field at the center of a single winding of radius r and car-
rying a current of i amperes is

B =
µ0i

2r
.

So for example, if the current were 1 ampere with a radius of 3 cm = .03
meters the field would be

B = 2.094 × 10−5

tesla or about .2094 gauss.
The permittivity of free space is

ε0 ≈ 8.8541878176 . . .× 10−12
F

m
.

A Farad is

F =
Coulomb

V olt
=

C

V
,

so

ε0 ≈ 8.8541878176 . . .× 10−12
C

V · m.

The velocity of light in free space is

c =
1√
ε0µ0

.

So

ε0 =
1

c2µ0

≈ 1

(9 × 1016)(4π × 10−7)
=

1

36π × 109
.
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6 Coulomb’s Law

Let n charges qi be placed at positions r′i. Let a = r − r′., Then

E(r) =
1

4πε0

n
∑

i=1

qiai

a3
i

.

We have
1

4πε0

= 8.987551787388872× 10−9,

which is approximately 9 × 10−9.

7 Potential

Because
∇× E = 0,

a line integral of E is independent of the path. So there exists a potential φ
so that

E = −∇φ.

We have
φ =

∫

E · dl.

For a point charge

φ(r) =
1

4πε0

q

a
.

8 Gauss’s Law

Let S be a sphere. Let q be a point charge at the center of S. Then
∫

S
E · nds = q/ε0

Let S be surrounded by an arbitrary surface G. Integrating the volume
bounded by S and G we deduce the integral over G equals the integral over
S. The integral of E over the surface of a volume not containing sources is
zero. This follows because in such a volume

∇ ·E = 0
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We conclude that the integral of a field E over a surface G, which is due to
point charges, is equal to the sum of the point charges contained within the
surface, divided by the permittivity of free space.

9 Charge Distribution

Divide a bounded space into small volumes ∆Vj . Let ρj be the charge per
volume. Let ρd be a linear combination of products of characteristic func-
tions of ∆Vj ’s and ρj ’s. Let the charge distribution (charge density) ρ be a
continuous function that approximates this step function. If ρ is continuous,
from the divergence theorem and Gauss’s law we deduce that

∇ ·E =
ρ

ε0

Now let ρ be a generalized function (i.e. a distribution). Then we define E
to be a solution to this differential equation in the distributional sense.

10 Electric Polarization

Two charges of magnitude q and differing signs, which are separated by a
vector r, create an electric field. This field depends only on the product of
the charge and the separation vector, and the field point location. We let
p = qr. p is called the electric dipole moment. We can think of a point dipole
moment, where as r shrinks, the charge q increases proportionately. We may
thus consider a vector field P , which is a continuous distribution of point
dipoles. P then is a dipole moment density. It is the dipole moment per unit
volume. The continuous vector field P is called the polarization. The dipole
moment of a volume ∆v is

P∆v.

Given a polarized region, we may integrate with respect to the volume to get
the electric field at a point due to the polarized region. As in the case of a
charge distribution, the electric field will be defined both inside and outside
of the polarized region.

The potential due to any localized charge distribution in a volume ∆V
may be written as an infinite sum of multipole sources. We retain only
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monopole and dipole terms. The monopole moment is

q =
∫

∆V
ρdv,

and the dipole moment is

p =
∫

∆V
rρdv.

Let P be the dipole moment per unit volume, which in general is a distribu-
tion. The dipole potential due to volume element dv is

dφ =
1

4πε0

P · a

a3
dv =

1

4πε0

P · (−∇f)dv =

1

4πε0

(f∇ · P −∇ · (fP ))dv

Integrating over a charged isolated volume V , we get

φ =
∫

∂V

σp

a
ds +

∫

V

ρp

a
dv,

where
σp = P · n

and
ρp = −∇ · P.

If we integrate over all space and assume P is zero at infinity, we have

φ =
∫

V

ρp

a
dv.

Since P may not be differentiable in the classical sense we take P to be
distribution. We may approximate P with a smooth function. When we
have a finite volume V , we may replace part of the volume integration by
surface integration on the boundary of V . This can be done by integrating
over a thin shell A that contains the boundary of V . For the thin shell we
have

φA =
∫

A

−∇ · P
a

dv =
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∫

A
(−∇ · (P/a) + P · ∇f)dv =

∫

∂A

−P · n
a

ds +
∫

A
P · ∇fdv

If P is bounded, then the second integral goes to zero as the volume of the
thin shell goes to zero. The first integral is over two parallel surfaces, one
of which is outside of V , assuming P is zero outside of V , we get back our
surface polarization charge density integral.

φA =
∫

∂A

−P · n
a

ds =

∫

∂V

σp

a
ds

11 Electric Displacement

From Gauss’s law integrating over a surface S we have
∫

S
E · nds = (q + qp)/ε0

∫

V
∇ · Edv = (q + qp)/ε0

q =
∫

V

ρ

a
dv,

qp =
∫

V

ρp

a
dv,

=
∫

V

−∇ · P
a

dv,

It follows that if D is defined by

D = ε0E + P

then
∇ · D = ρ.
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12 Electric Susceptibility, Permittivity, and

Dielectric Tensors

The polarization can usually be taken to be a linear function of the average
applied field. We write the components of the polarization as

Pi = ε0χijEj .

The tensor χ depends on the material. For an isotropic material it becomes
just a constant. The number ε0 is called the permittivity of free space. In
terms of the displacement D we have

D = ε0E + P = ε0(I + χ)E = ε0KE

where
Kij = I + χij .

The tensor K is called the dielectric constant, I is the identity matrix. The
tensor

εij = ε0Kij ,

is called the permittivity.

13 Energy of a Charge Distribution

Assembling point charges from infinity we find

U =
1

2

n
∑

i=1

qiφi.

Raising a charge density linearly from zero to full value, we find

U =
1

2

∫

ρ(r)φ(r)dv.

Using ∇ ·D = ρ and the divergence theorem we find that the energy density
is

u =
D · E

2
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14 Coefficients of Potential

Given n conductors we define pij to be the potential of conductor i when
there is unit charge on conductor j and the other conductors are uncharged.
Proposition. If a potential is multiplied by a constant c, then the charges
are multiplied by c.
Proof. Use En = σ/ε0 and ∇φ = −E.

Qjpij is the potential on conductor i, when Qj is the charge on conductor j
and the other charges are zero. In the general case, by linear superposition,
the potential on conductor i is

φi =
n

∑

i=1

pijQj

when the charges are Qj , j=1...n .
The energy of the conductors is

U =
1

2

n
∑

i=1

n
∑

j=1

pijQiQj .

The coefficients of potential are symmetric,

pij = pji

This may be shown by using the expression for the energy of the conductors
and taking the differential of the energy. Suppose only the charge Q1 is
nonzero. We get

dU =
1

2

n
∑

j=1

(p1j + pj1)Qj

This is also equal to

φ1dQ1 =
n

∑

j=1

p1jQjdQ1.

Equating these two expressions, we find that

p1j = pj1,

and so in general
pij = pji.
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The coefficients of potential are positive (Reitz and Milford, 3rd ed., p
121).

Suppose there are only two conductors in a capacitor. The charges are
equal, thus

C =
1

p11 + p22 − 2p12

.

When

φi =
n

∑

i=1

pijQj

is inverted, we get

Qi =
n

∑

i=1

cijφj.

The cij are called the coefficients of capacitance, and are elements of a sym-
metric matrix, being the inverse of a symmetric matrix. This follows by the
finite spectral theorem. A symmetric matrix can be diagonalized by an or-
thogonal transformation, that is the eigenvectors of a symmetric matrix are
orthogonal.

15 Properties of Harmonic Functions

A harmonic function f is a solution to Laplace’s Equation.

∇2f = 0.

In electrostatics in a region of zero charge density

∇ ·E = 0

Where there are no currents

∇× E = 0,

so that a line integral of E between two points is independent of the path,
and so E is given as the negative gradient of a potential function

E = −∇φ.
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So substituting this in

∇ ·E = 0

we have

∇2φ = 0.

Then the electrical potential is a harmonic function.
A harmonic function satisfies the following properties:
(1) A maxima or minima must occur on a boundary. (2) The average

over a spherical surface equals the value at the center.
A study of harmonic functions or potentials is called potential theory. A

force proportional to the inverse distance squared from source particles gives
rise to potentials and harmonic functions, which satisfy Laplace’s equation.
Thus besides static electric forces, gravitational sources lead to potentials.
For example see the classic book Potential Theory by Kellog. The real
and imaginary parts of a complex analytic function are harmonic functions
in the two dimensions of the complex plane, and so are a source of solutions
to two dimensional potential problems.

16 Shielded Conductors

Let uncharged conductors be located inside another conductor. The charge
densities of the inside conductors and on the inside surface of the bounding
conductor are zero everywhere. Otherwise we may trace a line of flux from
a positive charge on a conductor back to a negative charge on the same con-
ductor, possibly travelling through other conductors. The potential drops
in some portion of the path and never increases anywhere. This is a con-
tradiction, because we return to the same conductor. Solving the Neumann
problem we find the potential constant. It follows that if i and j are two of
these conductors and k is an outside conductor, then for shielded conductors

pik = pjk.

Proposition. pij = pji .
Proposition. pij > 0 and pii ≥ pij .
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17 Capacitors

Consider two conductors, one shielded by another. Number them 1 and 2.
Using Gauss’s law, the charges on the matching surfaces are equal. Call this
charge Q. If i is not equal to 1 or 2, then p1i = p2i. So

∆φ = (p11 + p22 − 2P12)Q =
Q

C
.

C is called the capacitance. The energy of a capacitor is

U =
1

2

2
∑

i=1

2
∑

j=1

pijQiQj

=
1

2

Q2

C
=

1

2
C∆Φ2.

18 Forces

Suppose the orientations and positions of a set of conductors depends on a
set of m generalized coordinates, u1, ..., um. Let charge be held fixed. And
let the system do work dW . Using the first law of thermodynamics we find

dW = −dU

Let the ith generalized forces be Fi. We have

m
∑

i=1

FidUi = dW = −
m

∑

i=1

∂U

∂ui
dUi.

Thus

Fi = −∂U

∂ui

.

If the potential is held fixed by a battery, then the battery does work 2dU ,
and thus

Fi =
∂U

∂ui

.
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19 Current Density

Let N be the number of charged particles per unit volume. Let each particle
have charge q and velocity v. Define the current density

J = Nqv.

Let a surface have normal n. Suppose J makes an angle θ with n. Consider
a tube of flowing charge of cross sectional area da′. In time dt, charge

dq = Nqdv = Nqvdtda′ = Nqvdtcos(θ)da

crosses the surface. da is the surface area through which the charge flows.
Thus

dq

dt
= J · nda.

20 The Equation of Continuity

Consider a closed surface bounding a volume where the charge density is
ρ. Using the fact that charge is conserved and the divergence theorem, and
assuming continuity, we obtain the equation of continuity

∇ · J +
dρ

dt
= 0.

21 Ohm’s Law

Ohm’s law says that the current density J, which is the vector flow of current
per unit area, is proportional to the electric field,

J = gE,

where g is the conductivity. The resistance of a wire of cross section A and
length L, assuming uniform current flow, is

R =
V

I
=

EL

JA
=

L

gA
.
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22 Ohm’s Law and Resistance

Ohm’s law says that the current density J, the current flow per unit area, is
proportional to the electric field. So

J = gE,

where g is the conductivity.
For uniform flow in a conductor of cross section A and length L, this

becomes
I

A
= J = gE = g

V

L
,

or

R =
V

I
=

L

gA
.

R is called the resistance.
So the resistance of a wire of cross section A and length L is

R =
V

I
=

EL

JA
=

L

gA
.

So the more well known special form of Ohm’s law is

V = RI.

The conductivity is sometimes written using the letter σ, and the recipro-
cal of the conductivity, called the resistivity, written as ρ. Then the resistance
is given by

R =
V

I
=

EL

JA
=

L

σA
=

ρL

A
.

The unit of resistivity is the ohm meter.

23 Steady Currents

When time derivatives are zero, the equation of continuity becomes

∇ · J = 0.
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Using E = −∇φ we obtain Laplace’s equation

∇2φ = 0.

Conservation of charge gives the boundary condition between two media

g1

∂φ

∂n
= g1

∂φ

∂n
.

24 Magnetic Induction

The magnetic force on a charge q1 due to a charge q2 is

F1 = q1v1 × (
µ0

4π
q2v2 ×

r1 − r2

|r1 − r2|3
)

where v1 and v2 are the respective velocities and r1 and r2 the positions of
the charges. We define the magnetic induction field B by

F = qv ×B

where B is due to moving charges as in the first equation. The Lorentz force
is the sum of the electric and magnetic forces

F = q(E + v × B).

By definition
µ0 = 4π10−7.

We have

µ0ε0 ==
1

c2

Note: ε0 is approximately
1

36π
10−9.

25 Biot-Savart Law

The Biot-Savart law gives the field due to a current i flowing in an element
of length d` as

dB =
µ0

4π

id` × r

r3
,
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where r is a vector from the current element vector d` to the field point. The
direction of the magnetic field follows the right hand rule. With the right
hand around the current element and the thumb pointing in the current
direction, the direction of the magnetic field is given by the direction of the
fingers.

Thus integrating around a current a single loop we find at the center of
the loop, the magnetic field at the center of a single winding of radius r and
carrying a current of i amperes is

B =
µ0i

2r
.

This differential form is equivalent to a current density definition given as

B(r1) =
µ0

4π

∫

V

J × (r1 − r2)

|r1 − r2|3
dx2dy2dz2.

Taking the divergence we find

∇ · B =
µ0

4π

∫

V
((∇× J) · r1 − r2

|r1 − r2|3
− J · (∇× r1 − r2

|r1 − r2|3
))dv2.

The first term is zero because J is not a function of r1. The second term is
zero because the curl of a gradient is zero. Thus for current sources,

∇ · B = 0.

If monopoles do not exist, this is a general result.

26 The Magnetic Field produced by Various

Circuits

Magnetic fields due to electric circuits can often be be computed by using
the Biot-Savart Law, or sometimes by the direct use of Maxwell’s equations.

26.1 The Field Due to a Straight Infinitely Long Wire

We calculate the field at the point x = 0, y = d, where current i flows in the
positive x direction. This is the field at a distance d from the wire. According
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to the right hand rule the field will be in the positive z direction for each
differential current element. From the Biot-Savart Law we have

dB =
µ0

4π

id` × r

r3
,

where r is a vector from the differential current element to the field point
(0, d.

The line element is
d` = dxux,

where ux is a unit vector in the positive x direction. Hence the angle θ
between d` and r for x negative is between 0 and π/2, whereas for x positive
it is greater it ranges from π/2 to π. For symmetric values x and −x the two
angles are supplements so that their sine values are equal. So the integral over
negative values equals the integral over positive values. So we can integrate
just for x positive to get half the field value. For x positive we have

d` × r

r3
=

sin(θ)dx

r2
uz

=
sin(φ)dx

r2
uz

where φ = π − θ is the acute angle between r and the x axis. We have

x =
d

tan(φ)

and

dx = −d tan−2(φ) sec2(φ)dφ = − d

sin2(φ)
dφ.

r = d/ sin(φ).

1

r2
=

sin2(φ)

d2

So
sin(φ)dx

r2
= −1

d
sin φdφ.

Therefore the field is

B = −2
iµ0

d4π

∫

0

π/2

sin φdφuz
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=
iµ0

d2π
(cos(0) − cos(π/2))uz

=
µ0

2π

i

d
uz.

This can be derived more easily by using Maxwell’s equation

∇×H = J.

So consider a circle of radius d around the wire. Integrating the area bounded
by the circle we have

∫

A
∇× H · dS =

∫

A
J · dS = i.

By symmetry H is tangent to the circle. So using Stokes’s Theorem
∫

A
∇×H · dS =

∫

∂A
H · d` = d2πH,

where ∂A is the circular boundary of area A. Hence

H =
i

2πd
,

and so

B = µ0H =
µ0i

2πd
.

The direction of the field is given by the right hand rule: With the thumb
in the direction of the current, the field is in the direction of the fingers curled
around the wire.

26.2 The Force Between Two Infinitely Long Parallel

Wires

Suppose the wires are separated by a distance d and each carry current i. If
the wires are infinitely long then the field B all around the wire by symmetry
is constant. The field of wire is as calculated in the previous problem, given
by

B = µ0H =
µ0i

2πd
.

The Lorentz force on an element of length ∆x of the second wire is

dF = ∆qv × B,
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where ∆q is the amount of charge on a length of the wire ∆x and v is the
velocity of this moving charge. The direction of the force on the second wire
is in the direction of

v × B,

because the direction of the current in the second wire is the same as in the
first wire. It follows by the right hand rule for cross products, that the force
dF on the second wire is toward the first.

Now v is perpendicular to B so we can write

∆F = ∆q
∆x

∆t
B =

∆q

∆t
∆xB = i∆xB

So the force per unit length on the second wire is

f = iB =
µ0i

2

2πd
,

directed toward the first wire. This can be used to define the unit of current,
because µ0 = 4π × 10−7 by definition.

26.3 Field Along the Axis of a Current Loop

Magnitude of the field at distance b from the plane of the loop of radius a

B =
µ0i

2

a2

(a2 + b2)3/2

26.4 Long Solenoid

N = number of turns, L length.
At center

B =
µ0Ni

L
.

At end

B =
µ0Ni

2L
.

Greek word Solenoid means channel.
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27 Torque on a Circuit

dτ = r × dF = r × (Idl × B)

and
τ = I

∮

r × (dl × B).

Define the magnetic moment of the circuit as

m =
I

2

∮

r × dl.

We will prove:
Proposition.

τ = m ×B.

Lemma 1.
∮

r · dr = 0

and
∮

xdx =
∮

ydy =
∮

ydy = 0.

Proof.
∮

r · dr =
∫

∇× rda = 0.

Lemma 2.
∮

(xdy + ydx) =
∮

(xdz + zdx) =
∮

(zdy + ydz) = 0.

Proof. For example, let
U = yi + xj.

Then
∇×U = 0,

and the result follows from Stokes’s Theorem.
Proof of the proposition.

τ = I
∮

r × (dl × B).

= I(
∮

(r · Bdr) −
∮

B(r · dr))
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= I
∮

dr(r · B).

The second integral vanishes by the Lemma. On the other hand

m× B =
I

2

∮

r × dl × B

=
I

2
(
∮

dr(r · B) − (
∮

r(B · dr).

When one expands these two terms, they are seen to be equal. For example
∮

dr(r·B) =
∮

(Byydx+Bzzdx)i+
∮

(Bxxdy+Bzzdy)j+
∮

(Bxxdz+Byydzk).

The equality is seen by using the lemmas. We get

m × B = I(
∮

dr(r · B) = τ.

28 Amperes’ Law

∇× B = µ0J.

Proof. We take the Curl of the Biot-Savart Law

B(r1) =
µ0

4π

∫

V

J × (r1 − r2)

|r1 − r2|3
dx2dy2dz2.

Let

G =
(r1 − r2)

|r1 − r2|3
.

Then
∇× B(r1) =

µ0

4π

∫

V
∇1 × (J × G)dv2.

We use the identity

∇1 × (J × G) = (∇1 · G)J − (∇1 · J)G + (G · ∇1)J − (J · ∇1)G

= (∇1 · G)J − (J · ∇1)G.

Terms 2 and 3 are zero because J is a function of r2. We have

(J · ∇1)G = −(J · ∇2)G.
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So
∇× B(r1) =

µ0

4π

∫

V
((∇1 · G)J + (J · ∇2)G)dv2.

The first term is
=

µ0

4π
4π

∫

V
δ(r2 − r1)Jdv2 = µ0J.

The second term is zero. Consider for example the x component. We have
∫

v
(J · ∇2)Gxdv =

∫

v
∇2Gx · Jdv

=
∫

v
∇2 · (GxJ)dv −

∫

v
Gx∇2 · Jdv

=
∫

∂v
GxJ · nda = 0.

We have assumed that there are no point current sources, i.e. ∇ · J = 0.
The last integral is zero because all currents are zero outside of a bounded
region contained in V .

29 The Vector Potential

If there are no magnetic monopoles, then

∇ · B = 0.

Then B is given by the curl of a vector field A

B = ∇× A.

Then
µ0J = ∇× (∇× A) = ∇(∇ · A) −∇2A = −∇2A,

provided we select a gauge so that ∇ · A = 0. The fundamental solution of
Poission’s equation gives

A =
µ0

4π

∫

J

|r− r′|dv′.

The vector potential for a distant circuit is obtained by using idr = Jdv and
by expanding

1

|r− r′|
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using the binomial theorem. Keeping linear terms we have

A(r) =
µ0

4π
m(r′) × r − r′

|r − r′|3 .

This is the potential of a magnetic dipole.

30 Magnetization

The magnetization vector M is defined to be the magnetic dipole moment
per unit volume. We have

A =
µ0

4π

∫

M× r − r′

|r− r′|3dv′

=
µ0

4π

∫

M×∇′ 1

|r − r′|dv′

= −µ0

4π

∫

∇′ × (M
1

|r − r′|)dv′

+
µ0

4π

∫ ∇′ × M

|r − r′| dv′

The first integral can be transformed to a surface integral using the divergence
theorem. In general, if F is an arbitrary constant vector, then

F ·
∫

∇×Gdv

= −
∫

∇ · (F ×G)dv

= −
∫

(F× G) · nda

= −F ·
∫

G × nda.

F is an arbitrary vector, so we have the general identity
∫

∇×Gdv = −
∫

G × nda.

So

−µ0

4π

∫

∇′ × (M
1

|r − r′|)dv′

31



=
µ0

4π

∫

M × n

|r − r′|da′.

As the bounding surface goes to infinity, where all current sources are zero,
the integral goes to zero. Then

A =
µ0

4π

∫ ∇′ × M

|r − r′| dv′

It follows in general that
∇× M = Jm.

Jm is the current density of the magnetic material. If currents are not zero
on the surface of a volume, then we have

A =
µ0

4π

∫

Jm

|r − r′|dv′ +
µ0

4π

∫

jm
|r− r′|da′,

where
jm = M× n.

31 Magnetic Intensity

Ampere’s law gives

∇× B = µ0(Jm + J) = µ0(∇×M + J).

J is the free current density. We define a magnetic intensity vector

H =
B

µ0

−M.

Then
∇×H = J.
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32 Magnetostatics

Suppose the free current density is zero. Then

∇×H = 0

so H is the gradient of a magnetic scalar potential φm.

H = −∇φm.

Because
∇ ·B = 0

we have
∇ ·H = −∇ · M

Thus the magnetic scalar potential φm satisfies the poisson equation

∇2φm = ρm

where
ρm = −∇ · M.

33 Sources of H

When there are magnetic materials and free currents we have

H(r1) =
1

4π

∫

V

J × (r1 − r2)

|r1 − r2|3
dx2dy2dz2 −∇φm.

34 Boundary Conditions

The divergence of B is zero so the normal component of B is continuous
across a surface separating two media. The boundary conditions on H are
more complex. Let a surface separate material 1 from material 2. Suppose in
general there is a surface current. Let j be the surface current density. This
is the current per unit length on the surface. Let ni be the surface normal
that points into material i. Let C be a rectangular path with a short side δ
that tends to zero and a long side h. One long side is in material 1 and the
other in material 2. The plane containing C is perpendicular to the original
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separating surface. Let t be a unit tangent to c. Let n be the normal to the
plane containing C. Then applying the right hand rule

ni × ti = n

Neglecting the contribution of the short sides to the line integral we have

∮

c
H · dr = (H1 · t1 + H2 · t2)h = hδJ · n

= hδJ|| · n
= hj · n.

J|| is the component of J parallel to the separating surface. Hence

H1 · t1 + H2 · t2 = j · (ni × ti) = (j× ni) · ti.

We have
t1 = −t2,

so when the surface current is zero, the tangential component of H is con-
tinuous across the surface.

35 Magnetic Susceptibility and Permeability

For isotropic and linear materials

M = χmH.

Then
B = µ0(H + M) = µ0(1 + χm)H = µH.

χm is the susceptibility and µ the permeability. Ferromagnetic materials can
have a permanent magnetization and the relation between B and H depends
upon the magnetization history.
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36 Magnetic Circuits

A continuous tube of flux Φ forms a magnetic circuit. Let the circuit pass
through a coil containing N turns and current i. For a path around the
circuit

Ni =
∮

H · dr =
∑

HiLi =
∑ Liφ

µiAi
= Φ

∑

<i.

This equation is an approximation. Hi is an assumed constant value of H
in the ith piece of the circuit. The reluctance of the ith piece is <i. L is the
length of the piece and A is the cross sectional area. The magnetomotive
force mmf is Ni. We have

mmf = Φ<.

37 Deriving the Electromagnetic Wave Equa-

tion From Maxwell’s Equations

We present here a derivation of the electromagnetic wave equation for a
simple special case. We assume that the wave is moving in free space, and
we derive the equation for the electric field vector.

The Maxwell Equations in MKS form are

∇× H = J +
∂D

∂t
,

∇×E = −∂B

∂t
,

∇ · D = ρ,

∇ · B = 0.

D = ε0E + P,

where P is the electric dipole moment per unit volume in a dielectric
material. The number ε0 is called the permittivity of free space.

The magnetic field vectors B and H are related by

H =
B

µ0

−M,
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H

E

S

Figure 1: Electromagnetic Waves. The electromagnetic wave in free space
is a transverse wave consisting of mutually perpendicular vectors, an electric
field vector E, and a magnetic field vector H. These vectors in turn are each
perpendicular to the Poynting vector S = E×H, which defines the direction
of the wave and its energy flow.
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where M is the magnetic dipole moment per unit volume. The number µ0 is
called the permeability of free space.

We start with Maxwell’s equations for free space, where there is no cur-
rent density J or charge sensity ρ, and there are no electric dipole fields or
magnetic dipole fields because there is no matter. So in this case

H =
B

µ0

D = ε0E

The first Maxwell equation becomes

∇× B

µ0

= ε0

∂E

∂t
,

or

∇×B = µ0ε0

∂E

∂t
.

The second one is

∇×E = −∂B

∂t
.

Taking the curl of this equation we have

∇× (∇×E) = − ∂

∂t
(∇×B) = − ∂

∂t
(µ0ε0

∂E

∂t
) = −µ0ε0

∂2E

∂t2

We use the identity from vector analysis

∇× (∇× E) = ∇(∇ · E) −∇2E.

Because
∇ · E = ρ = 0,

the first term on the right hand side is zero. Thus we have finally

∇2E = µ0ε0

∂2E

∂t2

Now written out this is

∇2E = ∇2E1i + ∇2E2j + ∇2E3k = µ0ε0(
∂2E1

∂t2
i +

∂2E2

∂t2
j +

∂2E3

∂t2
k).
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So there are three scalar equations.

∂2E1

∂x2
+

∂2E1

∂y2
+

∂2E1

∂z2
= µ0ε0

∂2E1

∂2t

∂2E2

∂x2
+

∂2E2

∂y2
+

∂2E2

∂z2
= µ0ε0

∂2E2

∂2t

∂2E3

∂x2
+

∂2E3

∂y2
+

∂2E3

∂z2
= µ0ε0

∂2E1

∂2t

Now Ei = 0 is clearly a solution to the ith equation. So suppose only E2

is not sero. Now if E2 is a function of only x, then the second equation is

∂2E2

∂x2
= µ0ε0

∂2E2

∂2t
,

which is a one dimensional wave equation. And the wave velocity is

v =
1√
µ0ε0

Now
ε0 = 8.85 × 10−12

and
µ0 = 4π × 10−7.

And so
v = c

the velocity of light.
This demonstrates that light is an electromagnetic wave.
More things can be proven, namely that B satisfies the same equation,

that the two fields are propagated so that E H and the energy propagation
vector, the wave direction vector S (Poynting vector)are mutually perpen-
dicular. And all the optical properties are explained. That the wave velocity
is slower as light passes through matter, explaining light refraction.
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38 The Poynting Vector

The Poynting vector S gives the direction and magnitude of energy flux of
an electromagnetic wave. E and H are perpendicular to each other and
mutually perpendicular to the wave direction and to the direction of energy
flow S. The Poynting vector is given by

S = E ×H

John Henry Poynting (born September 9, 1852, died March 30, 1914) was
an English physicist. He was a professor of physics at Mason Science College,
which became the University of Birmingham.

39 Electromagnetic Waves: Light and Optics

Light and optics is a theory of electromagnetic waves, and the speed of light
in free space is determined by ε0 and µ0.

40 The Existence of Electromagnetic Waves

Imply the Theory of Relativity

Recall that Einstein’s original paper is titled, On the Electrodynamics
of Moving Bodies, which shows that electrodynamics is consistent only if
time and space is relative.

41 An Electric Field Can Appear as a Mag-

netic Field in a Second Relative Coordi-

nate System

Reference: Feynman. Electric fields and magnetic fields are part of the same
field theory, which is the basis for the Nobel prize of 1965 awarded to Sin-
Itiro Tomonaga, Julian Schwinger, and Richard P. Feynman, for their theory
of the electro-weak force.
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42 Systems of Units

There are four basic systems of units used in electromagnetic theory, the
MKS system, the electrostatic cgs system, the electrodynamic cgs system,
and the Gaussian cgs system.

We have been using the rationalized MKS system, whose units agree with
the practical system of electrical units based on the Ampere and the Volt.

abampere = 10 amperes
Abampere: definition force per unit length between infinite wires d dis-

tance apart.

f =
2i2

d
.

charge statampere (electrostatic system, and gaussian)

abcoulomb = statcoulomb/c

43 Fields Relations and Maxwell’s Equations

in the Gaussian cgs Units

The Maxwell Equations, in the vacuum case, in Gaussian cgs units are

∇× B =
4π

c
J +

1

c

∂E

∂t
,

∇× E = −1

c

∂B

∂t
,

∇ · E = 4πρ,

∇ · B = 0.

Fields:

D = E + 4πP

P = χE

D = KE

Lorentz Force:

F = qE +
q

c
v × B

References: Purcell Electricity and Magnetism, Kip Fundamentals of elec-
tricity and magnetism.
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44 The Force Between Infinitely Long Par-

allel Current Carrying Wires (Gaussian

Units)

This can be derived by using Maxwell’s equation

∇×B =
4π

c
J.

So consider a circle of radius d around the wire. Integrating the area bounded
by the circle we have

∫

A
∇×B · dS =

∫

A

4π

c
J · dS =

4π

c
i.

By symmetry B is tangent to the circle. So using Stokes’s Theorem

∫

A
∇×B · dS =

∫

∂A
B · d` = d2πH,

where ∂A is the circular boundary of area A. Hence

B =
4π

c

i

2πd
=

2i

cd
.

The direction of the field is given by the right hand rule: With the thumb
in the direction of the current, the field is in the direction of the fingers curled
around the wire.

Suppose the two wires are separated by a distance d and each carry cur-
rent i. If the wires are infinitely long then the field B all around the wire by
symmetry is constant.

The Lorentz force on a charge of q statcoulombs in the Gaussian system
is

F = qE +
q

c
v × B

The Lorentz force on an element of length ∆x of the second wire is there-
fore

dF =
∆q

c
v × B,
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where ∆q is the amount of charge on a length of the wire ∆x and v is the
velocity of this moving charge. The direction of the force on the second wire
is in the direction of

v × B,

because the direction of the current in the second wire is the same as in the
first wire. It follows by the right hand rule for cross products, that the force
dF on the second wire is toward the first.

Now v is perpendicular to B so we can write

∆F = ∆q
∆x

∆t
B =

∆q

∆t
∆xB = i∆xB

So the force per centimeter on the second wire is

f = iB =
1

c2

2i2

d
.

directed toward the first wire.
The force per centimeter if the current is in abamperes is

f = iB =
2i2

d
.
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